BHASKARACHARYA |

Thursday, 21 September 2006 14:17 | ||||||

The period between 500 and 1200 AD was the golden age of Indian Astronomy. In this long span of time Indian Astronomy flourished mainly due to eminent astronomers like Aryabhat, Lallacharya, Varahamihir, Brahmagupta, Bhaskaracharya and others. Bhaskaracharya’s Siddhanta Shiromani is considered as the pinnacle of all the astronomical works of those 700 hundred years. It can be aptly called the “essence” of ancient Indian Astronomy and mathematics. In the ninth century Brahmagupta’s Brahmasphutasiddhanta was translated in Arabic. The title of the translation was ‘Sind Hind’. This translation proved to be a watershed event in the history of numbers. The Arabs quickly grasped the importance of the Indian decimal system of numbers. They played a key role in transmitting this system of numbers to Europeans. For a long time Europeans were using Roman Numerals, which were very tedious to handle. After accepting the decimal system of numbers, European mathematicians made a remarkable progress in mathematics, but that was about 500 years after Bhaskaracharya.
Ganesh Daivadnya has bestowed a very apt title on Bhaskaracharya. He has called him ‘Ganakchakrachudamani’, which means, ‘a gem among all the calculators of astronomical phenomena.’ Bhaskaracharya himself has written about his birth, his place of residence, his teacher and his education, in Siddhantashiromani as follows,
SIDDHANTASHIROMANI
Kuttak
Chakrawaal is the “indeterminate equation of second order” in western mathematics. This type of equation is also called Pell’s equation. Though the equation is recognized by his name Pell had never solved the equation. Much before Pell, the equation was solved by an ancient and eminent Indian mathematician, Brahmagupta (628 AD). The solution is given in his Brahmasphutasiddhanta. Bhaskara modified the method and gave a general solution of this equation. For example, consider the equation 61x2 + 1 = y2. Bhaskara gives the values of x = 22615398 and y = 1766319049 Simple mathematical methods
Bhaskara has given simple methods to find the squares, square roots, cube, and cube roots of big numbers. He has proved the Pythagoras theorem in only two lines. The famous Pascal Triangle was Bhaskara’s ‘Khandameru’. Bhaskara has given problems on that number triangle. Pascal was born 500 years after Bhaskara. Several problems on permutations and combinations are given in Lilawati. Bhaskar. He has called the method ‘ankapaash’. Bhaskara has given an approximate value of PI as 22/7 and more accurate value as 3.1416. He knew the concept of infinity and called it as ‘khahar rashi’, which means ‘anant’. It seems that Bhaskara had not notions about calculus, One of his equations in modern notation can be written as, d(sin (w)) = cos (w) dw.
BHASKAR’S ASTRONOMY
Ganitadhyaya and Goladhyaya of Siddhanta Shiromani are devoted to astronomy. All put together there are about 1000 verses. Almost all aspects of astronomy are considered in these two books. Some of the highlights are worth mentioning.
Aksha kshetre
Geocentric parallax
Yantradhyay
A GLANCE AT THE ASTRONOMICAL ACHIEVEMENTS OF BHASKARACHARYA |
||||||

Last Updated on Monday, 19 February 2007 11:14 |